Dual Center Operations Setup and
Monitoring Guide

February 25, 2025

Dual Center Operations Setup and Monitoring Guide February 25, 2025

Contents
Architecture 2
Master-Master L e e e e e 3
MSSQLAIWaYS ON o o e e e e e e e e e e e e e 3
PostgresBucardo L e e e 3
Failover e e e e 3
LoadBalancing o e e 4
HA Deployment 4
Preparethe Servers o e e e e e e e 5
Setup Replication (PostgresExample) 5
Startthefull stackonbothsites 9
Configure Manatee 10
Test the HA setup 10
Monitor 10
Hostand Container i i e e e e e e 11
Replication Process e e e e e e 11
Security 12
Minimum Requirement L e e e e 12
Further Security Measures o i i e e e e e e 12

This document provides an overview of the Dual Center - High Availability (HA) Operation supported
by the Sirenia Context Manager and Sirenia Automation Software Suite. You should read the architec-
ture documentation beforehand, in order to understand the components and their roles.

Architecture

High availability is arequirement for many deployments. This is especially important for deployments
of Sirenia Automation for Desktop Automation and for Sirenia Context Management, as the end user
will be using the solution in their daily work. The supported High Availability Operation replicate data
across multiple servers, and failover traffic when e.g. a primary server stops responding.

Dual Center Operations Setup and Monitoring Guide February 25, 2025

Master-Master

The HA support is built on data replication in a master-master architecture. The master-master setup
implements a solution with several master databases (both read and write mode) and several hot
application servers (both read and write mode). These servers will remain synchronized utilizing an
asynchronous replication. If one server fails, the other contains all of the data of the failed server, and
will quickly start serving the disconnected clients.

MSSQL Always On

One possibility is to utilize the MSSQL Always On tehcnology. The Always On availability groups fea-
ture is a high-availability and disaster-recovery solution that provides an enterprise-level alternative
to database mirroring. Introduced in SQL Server 2012 (11.x), Always On availability groups maximizes
the availability of a set of user databases for an enterprise. An availability group supports a failover
environment for a discrete set of user databases, known as availability databases, that fail over to-
gether. An availability group supports a set of read-write primary databases and one to eight sets of
corresponding secondary databases.

If MSSQL Always On is chosen as solution, appropiate licenses should be acquired both from Microsoft
and Sirenia, and the Always On solution should be setup according to best-pratice.

Postgres Bucardo

Asynchronous replication build utilizing a Bucardo solution could also be chosen as replication so-
lution. Bucardo is a replication program for two or more Postgres databases. Specifically, it is an
asynchronous, multi-master, table-based replication system. It is written in Perl, and uses extensive
use of triggers, PL/PgSQL, and PL/PerlU. Bucardo replication is not supported by Sirenia. It’s only a
suggestion. Other replication mechanisms may be utilized as well. The parti operating the system
should select a replication mechanism they know and have been educated in.

Failover

The master-master server setup is combined with a client side failover funktionality, in order to en-
sure high availability. Once a Manatee client detects a failure on its current application server, it will
automatically fail over to a secondary application server. The secondary application server is also a
master in the complete solution, and the client will continue operation without degradation of func-
tionality. Operations will have to take appropriate actions to restore service of the failed application
server. Cuesta instances will not failover automatically, but it is possible to deploy Cuesta on both
sites.

Dual Center Operations Setup and Monitoring Guide February 25,2025

l Manatee l \EREICE
Cuesta Cuesta

Load Balancing

In order to utilize the resources of the provisioned application servers, the Manatee clients will load
balance across all available application servers running live Kwanza instances. Load balancing is im-
plemented in client side Manatee functionality and follows a randomized round robin server selection
with a first choice. The possible application servers must be configured in the Manatee configuration
and follow a DNS naming scheme as 0.ha-domain, 1.ha-domain ... n.ha-domain until the
number of possible application servers are reached. Alternatively a list of active servers can be proi-
vided which does not follow the naming scheme.

HA Deployment

To perform a deployment on a dual site setup including the two example sites

« 0.ha.test
+ 1.ha.test

setup DNS for each site and follow this procedure.

Dual Center Operations Setup and Monitoring Guide February 25,2025

Prepare the Servers

Deploy a valid single-site application server deployment (including postgres, kwanza and cuesta) on
Site 0, by following the install guides for your operation system. This could also be a single site de-
ployment, which have been in operation for some time, which now have to be dual site HA enabled.

On Site 1, deploy a valid single-site application server deployment (including postgres, kwanza and
cuesta), by following the install guides for your operation system. This must be a clean install, as we
will be using any existing data from Site 0 as starting point for the master-master replication.

You now have two full stacks running, one on each site. Site 0 may include data. Site 1 is an empty

clean install.

Setup Replication (Postgres Example)

Site 0 will be the site running the replication process. Any of the sites could have been responsible for
this is a master-master setup with two sites. We chose Site 0.

Add this to the end of your docker-compose.yaml file on Site 0.

postgres_replication:
image: plgr/bucardo
restart: always
volumes:
- "/Jusr/local/etc/sirenia/postgres/conf:/media/bucardo"
depends_on:
- postgres

Ensure that only the postgres docker is running on both sites

On Site 0:

root@0:~/deploy# docker-compose stop

Stopping deploy_cuesta_1 ... done
Stopping deploy_kwanza_1 ... done
Stopping deploy_postgres_1 ... done
root@0:~/deploy# docker-compose up -d postgres
Starting deploy_postgres_1 ... done
root@0:~/deploy# docker-compose ps
Name Command State
Ports
deploy_cuesta_1 /bin/sh -c /bin/sh -c "if ... Exit O

Dual Center Operations Setup and Monitoring Guide February 25,2025

deploy_kwanza_1 kwanza serve Exit 2
deploy_postgres_1 docker-entrypoint.sh postgres Up
0.0.0.0:5444->5432/tcp
deploy_postgres_replication_1 /bin/bash -c /entrypoint.sh Exit
137
On Site 1

root@l:~/deploy# docker-compose stop

Stopping deploy_cuesta_1l ... done
Stopping deploy_kwanza_1 ... done
Stopping deploy_postgres_1 ... done
root@l:~/deploy# docker-compose up -d postgres
Starting deploy_postgres_1 ... done
root@l:~/deploy# docker-compose ps
Name Command State
Ports
deploy_cuesta_1 /bin/sh -c /bin/sh -c "if ... Exit O
deploy_kwanza_1 kwanza serve Exit 2

deploy_postgres_1 docker-entrypoint.sh postgres Up
0.0.0.0:5444->5432/tcp

Ensure connection both ways.

From Site 0 populate Site 1 database with structrures and initial data. On Site 0:

docker exec -it deploy_postgres_1 "/bin/bash"
su postgres

echo "DROP DATABASE IF EXISTS kwanza" | psql -U postgres -h 1l.ha.test -
p 5444

echo "CREATE DATABASE kwanza" | psql -U postgres -h 1l.ha.test -p 5444

pg_dump --schema-only kwanza | psql -U postgres -h 1l.ha.test -p 5444 -d
kwanza

exit

exit

Dual Center Operations Setup and Monitoring Guide February 25,2025

Initial load DB on secondary (master-slave with full copy)

nano /usr/local/etc/sirenia/postgres/conf/bucardo.json

"databases": [

{
l|-id|l: 0,
"dbname": "kwanza",
"host": "O.ha.test port=5444",
"user": "postgres",
"pass": '"postgres"

3 q
"id": 1,
"dbname": "kwanza",
"host": "l.ha.test port=5444",
"user": "postgres",
"pass": '"postgres"

H,

"syncs" : [

{
"sources": [0],
"targets": [1],
"tables": "all",
"onetimecopy": 1

}

Start initial replication

docker-compose up postgres_replication

Wait for an entry with state Good.

postgres_replication_1 | Name State Last good Time Last I
/D Last bad Time
postgres_replication_1 |

-4 -4 oS-SS -4 -4 -S4 S-S =—=—===+4=-======
postgres_replication_1 | syncO | Good | 12:56:06 | 2s | /17
| none |

Dual Center Operations Setup and Monitoring Guide February 25,2025

Stop the replication process with ctr1-c and adjust configuration to a master-master setup

nano /usr/local/etc/sirenia/postgres/conf/bucardo.json

{
"databases": [
{
"id": 0,
"dbname": "kwanza",
"host": "O.ha.test port=5444",
"user": "postgres",
"pass": '"postgres"
3, q
"id": 1,
"dbname": "kwanza",
"host": "l.ha.test port=5444",
"user": "postgres",
"pass": '"postgres"
H,
"syncs" : [
{
"sources": [0,1],
"targets": [],
"tables": "all",
"onetimecopy": ©
}
]
}

Start the master-master replication and ensure that it runs in state Good

root@0:~/deploy# docker-compose up -d postgres_replication

deploy_postgres_1 is up-to-date

Starting deploy_postgres_replication_1 ... done

root@0:~/deploy# docker logs -t --tail 100 -f
deploy_postgres_replication_1

Name State Last good Time Last I/D Last bad Time
-4 =-S=—==-=—=—==—+4=-S=—=-—==—=—=—=—=—=—=—=—+4=-—=—=—=—=—=—=—4=-=—=—=—=—=—=—=—=—=—=—4=—=—=—=—=—=—=—===—=+4=======
sync@® | Good | 13:19:08 | 7s | 37/106 | none |

Stop the replication log tail with ctrl-c

Dual Center Operations Setup and Monitoring Guide February 25,2025

Start the full stack on both sites
On Site O:

root@0:~/deploy# docker-compose up -d
deploy_postgres_1 is up-to-date
deploy_postgres_replication_1 is up-to-date

Starting deploy_kwanza_1 ... done
Starting deploy_cuesta_1l ... done
root@0:~/deploy# docker-compose ps
Name Command State
Ports
deploy_cuesta_1 /bin/sh -c /bin/sh -c "if ... Up
0.0.0.0:443->443/tcp, 0.0.0.0:80->80/tcp
deploy_kwanza_1 kwanza serve Up

0.0.0.0:6060->6060/tcp, 0.0.0.0:8000->8000/tcp,
0.0.0.0:8001->8001/tcp

deploy_postgres_1 docker-entrypoint.sh postgres Up
0.0.0.0:5444->5432/tcp
deploy_postgres_replication_1 /bin/bash -c /entrypoint.sh Up
On Site 1:

root@l:~/deploy# docker-compose up -d
deploy_postgres_1 is up-to-date

Starting deploy_kwanza_1 ... done

Starting deploy_cuesta_1l ... done

root@l:~/deploy# docker-compose ps

Name Command State
Ports

deploy_cuesta_1 /bin/sh -c /bin/sh -c "4if ... Up
0.0.0.0:443->443/tcp, 0.0.0.0:80->80/tcp

deploy_kwanza_1 kwanza serve Up
0.0.0.0:6060->6060/tcp, 0.0.0.0:8000->8000/tcp, 0.0.0.0:8001->8001/
tcp

deploy_postgres_1 docker-entrypoint.sh postgres Up
0.0.0.0:5444->5432/tcp

Dual Center Operations Setup and Monitoring Guide February 25, 2025

Configure Manatee
In order to have Manatee do automatically failover and load balance between sites, the configuration
of Manatee must be adapted to this situation. The following settings must be set:

+ URL for Kwanza: grpc:
+ Number of load-balancing Kwanza servers: 2

For test purpose you may want to lower the reconnect delay. Don’t do this in production. (In produc-
tion this should be approx 180 seconds.)

« Kwanza reconnect delay: 5
Given these settings Manatee will random round robin between the servers

« 0.ha.test - Site 0
« l.hatest-Sitel

on a 50/50 load approximation. If you would like to achieve a non-symmetric load setup, you could
assign more DNS names to one site. This setup will eg. realize a 66/33 load on Site 0 vs. Site 1.

« 0.ha.test- Site 0
« 1.hatest-Site0
« 2.ha.test - Site 1

Remember the implications on load on Site 1 if Site 0 fails.

Test the HA setup

The new dual center master-master setup is running. You should perform the following tests:

+ Will changes made in Cuesta on Site 0 show in Site 17

Will changes made in Cuesta on Site 1 show in Site 0?

Will Manatee connect to Site 0 if configured directly to that?

Will Manatee connect to Site 1 if configured directly to that?

Will Manatee connect to Site 0 or Site 1 if configured to HA operations?

Will Manatee fail over to alternative if configured to HA operations and current site is killed?

Monitor

In order to realise a reliable operation of the replication process, operations should monitor the state
of the replication.

10

Dual Center Operations Setup and Monitoring Guide February 25, 2025

Host and Container

Oerations should monitor the Docker Host, Docker Container, and the state of the replication process
inside the replication container. For Docker Host and Docker Container refer to the Operations Guide
for your operating system.

Replication Process

To get the state of the replication process inside the replication container look in the logfile from the
container:

root@0:~/deploy# docker logs -t --tail 100 -f
deploy_postgres_replication_1

Name State Last good Time Last I/D Last bad Time
sync@® | Good | 13:19:08 | 7s | 37/106 | none |

For more details enter the container and look for the details there:

root@0:~/deploy# docker exec -it deploy_postgres_replication_1 "/bin/
bash"

root@85e23b6fc26d: /# su postgres

postgres@85e23b6fc26d:/$ bucardo status

PID of Bucardo MCP: 199

Name State Last good Time Last I/D Last bad Time

B e e e e e e e e e S

sync@® | Good | 15:38:58 | 4m 10s | 1/3 | none

And detailed status of the sync job

postgres@85e23b6fc26d:/$ bucardo status synco

Last good : Jan 16, 2020 15:38:56 (time to run: 2s)
Rows deleted/inserted 1/ 3

Sync name ¢ syncoO

Current state : Good

Source relgroup/database : sync0_25 / dbl

Tables 1in sync : 22

Status : Active

Check time : None

Overdue time : 00:00:00

11

Dual Center Operations Setup and Monitoring Guide February 25, 2025

Expired time : 00:00:00
Stayalive/Kidsalive : Yes / Yes
Rebuild 1index : No
Autokick : Yes
Onetimecopy : No
Post-copy analyze ¢ Yes

Last error:

Security

It’s important to consider security on the HA environment before going into production. There are
several security aspects such as encryption, role management and access restriction by IP address.
These topics are beyond the scope of this guide and best practice for postgres administration should
be followed.

Minimum Requirement

A minimum requirement is to alter the postgres user password, as going into a HA setup, requires that
the postgres port is exposed to the network (this is not the case in a single server configuration)

The environment variable POSTGRES_PASSWORD sets the superuser password for PostgreSQL.
The default superuser is defined by the POSTGRES_USER environment variable. The docker-
compose.yaml files should be adjusted to use these. Refer to the docker image documentation at
https://hub.docker.com/_/postgres

Further Security Measures

Further security measures can be handled through the pg_hba.conf file which handles the client
authentication. Limit the type of connection, the source IP or network, which database, and with
which users can be controlled here.

Correct user management, either using secure passwords or limiting access and privileges, is also
an important piece of the security settings. It is recommended to assign the minimum amount of
privileges possible to users, as well as to specify, if possible, the source of the connection.

Finally, it is recommended to keep servers up to date with the latest patches, to avoid security risks.

12

	Architecture
	Master-Master
	MSSQL Always On
	Postgres Bucardo
	Failover
	Load Balancing

	HA Deployment
	Prepare the Servers
	Setup Replication (Postgres Example)
	Start the full stack on both sites

	Configure Manatee
	Test the HA setup
	Monitor
	Host and Container
	Replication Process

	Security
	Minimum Requirement
	Further Security Measures

